Rings and fields /

Main Author: Ellis, Graham.
Format: Book
Language:English
Published: Oxford [England] : New York : Clarendon Press ; Oxford University Press, 1992.
Series:Oxford science publications
Subjects:
LEADER 02985nam a2200373 a 4500
001 2005829
005 20171111235951.0
008 001023s1992 enka ob 001 0 eng d
020 |a 058529447X  |q (electronic bk.) 
020 |a 9780585294476  |q (electronic bk.)  |z 0198534558  |q (hardback)  |q (pbk.) 
040 |a N$T  |b eng  |e pn  |z 019853454X 
050 4 |a QA247  |b .E39 1992eb 
100 1 4 |a Ellis, Graham. 
245 1 0 |a Rings and fields /  |c Graham Ellis. 
260 1 0 |a Oxford [England] :  |b Clarendon Press ;  |c 1992.  |a New York :  |b Oxford University Press, 
300 1 0 |a 1 online resource (viii, 169 pages) :  |b illustrations. 
490 1 0 |a Oxford science publications 
504 1 0 |a Includes bibliographical references (page 166) and index. 
505 0 0 |a 0. Preliminaries. Definition of rings and fields. Vector spaces. Bases. Equivalence relations. Axiom of choice -- 1. Diophantine equations: Euclidean domains. Euclidean domain of Gaussian integers. Euclidean domains as unique factorization domains -- 2. Construction of projective planes: splitting fields and finite fields. Existence and uniqueness of splitting fields and of finite fields of prime power order -- 3. Error codes: primitive elements and subfields. Existence of primitive elements in finite fields. Subfields of finite fields. Computation of minimum polynomials -- 4. Construction of primitive polynomials: cyclotomic polynomials and factorization. Basic properties of cyclotomic polynomials. Berlekamp's factorization algorithm -- 5. Ruler and compass constructions: irreducibility and constructibility. Product formula for the degree of composite extensions. Irreducibility criteria for polynomials over the rationals. The field of constructible real numbers -- 6. Pappus' theorem and Desargues' theorem in projective planes: Wedderburn's theorem. Proof of Wedderburn's theorem -- 7. Solution of polynomials by radicals: Galois groups. Basic definitions and results in Galois groups. Discriminants -- 8. Introduction to groups. Group axioms. Subgroup lattice. Class equation. Cauchy's theorem. Transitive permutation groups. Soluble groups -- 9. Cryptography: elliptic curves and factorization. Euler's function. Discrete logarithms. Elliptic curves. Pollard's method of factorizing integers. Elliptic curve factorization of integers. 
650 0 0 |a Rings (Algebra) 
650 0 0 |a Algebraic fields. 
650 0 6 |a Anneaux (Algèbre) 
650 0 6 |a Corps algébriques. 
650 0 7 |a MATHEMATICS  |x Algebra  |x Intermediate. 
650 0 7 |a Algebraic fields. 
650 0 7 |a Rings (Algebra) 
650 1 7 |a Ringen (wiskunde) 
650 1 7 |a Veldentheorie. 
650 1 7 |a Corps algébriques. 
650 1 7 |a Anneaux (Algèbre) 
952 |a GrAtEKP  |b 59cd28316c5ad1344610f4b5  |c 998a  |d 945l  |e 512.4 EliG r 1992  |t 1  |x m  |z Books 
952 |a CY-NiOUC  |b 5a0462046c5ad14ac1ee67d7  |c 998a  |d 945l  |x m  |z Books 
952 |a GR-AtNTU  |b 59cc29956c5ad13446f9ecea  |c 998a  |d 945l  |e 512.4 ELL  |t 2  |x m  |z Books 
952 |a GRThAnMak  |b 59cca1116c5ad13446024d67  |c 998a  |d 945l  |x m  |z Books