|
|
|
|
LEADER |
01896nam a2200241 a 4500 |
001 |
1977013 |
005 |
20171111235910.0 |
008 |
960615s1993 cy da er 000 u eng d |
020 |
|
|
|a 0195076524
|q pbk.
|
020 |
|
|
|a 0195091582
|q (acid-free paper)
|
040 |
|
|
|a CY
|b University of Cyprus
|e AACR-2
|q pbk.
|
050 |
|
|
|a QC174.45.K34 1993
|
100 |
1 |
|
|a Kaku, Michio
|
245 |
1 |
0 |
|a Quantum field theory:
|b a modern introduction/
|c Michio Kaku
|
260 |
1 |
0 |
|a New York:
|b Oxford University Press,
|c 1993
|
300 |
1 |
0 |
|a xix, 785 p. ;
|c 24 cm.
|
500 |
1 |
0 |
|a Includes bibliographical references (p. [763]-777) and index.
|
500 |
1 |
0 |
|a Partial contents: I. Quantum Fields and Renormalization. 1. Why Quantum Field Theory? 2. Symmetries and Group Theory. 3. Spin-0 and 1/2 Fields. 4. Quantum Electrodynamics. 5. Feynman Rules and LSZ Reduction. 6. Scattering Processes and the S Matrix. 7. Renormalization of QED -- II. Gauge Theory and the Standard Model. 8. Path Integrals. 9. Gauge Theory. 10. The Weinberg-Salam Model. 11. The Standard Model. 12. Ward Identities, BRST, and Anomalies. 13. BPHZ Renormalization of Gauge Theories. 14. QCD and the Renormalization Group -- III. Nonperturbative Methods andUnification. 15. Lattice Gauge Theory. 16. Solitons, Monopoles, andInstantons. 17. Phase Transitions and Critical Phenomena. 18. Grand Unified Theories. 19. Quantum Gravity. 20. Supersymmetry and Supergravity. 21. Superstrings -- App. A.1 SU(N) -- App. A.2 Tensor Products -- App. A.3 SU(3) -- App. A.4 Lorentz Group -- App. A.5 Dirac Matrices -- App. A.6 Infrared Divergences to All Orders -- App. A.7 Dimensional Regularization.
|
650 |
1 |
0 |
|a Gauge fields (Physics)
|
650 |
1 |
0 |
|a Quantum field theory
|
650 |
1 |
0 |
|a Standard model (Nuclear physics)
|
952 |
|
|
|a GR-AtNTU
|b 59cc26c26c5ad13446f97d80
|c 998a
|d 945l
|e 530143
|t 1
|x m
|z Books
|
952 |
|
|
|a CY-NiOUC
|b 5a043aca6c5ad14ac1e9d84c
|c 998a
|d 945l
|e QC174.45.K34 1993
|t 1
|x m
|z Books
|