Principles of heating, ventilation, and air conditioning in buildings /

Main Author: Mitchell, John W., 1935-
Other Authors: Braun, James E.,
Format: Book
Language:English
Published: Hoboken, NJ : John Wiley & Sons, c2013
Subjects:
Table of Contents:
  • Machine generated contents note: 1.Introduction to HVAC Systems
  • 1.1.Systems and Definitions
  • 1.2.History of Air Conditioning
  • 1.3.Trends in Energy Use and Impact
  • 1.4.HVAC System Design and Operation
  • 1.5.Energy Costs
  • 1.6.Book Philosophy and Organization
  • 1.7.Units
  • 1.8.Summary
  • Problems
  • 2.System Analysis Techniques and the Use of EES
  • 2.1.Introduction
  • 2.2.Introduction to EES 19
  • 2.3.Common Problems Encountered when Using EES
  • 2.4.Curve Fitting Using EES
  • 2.5.Optimization Using EES
  • 2.6.Successful Problem Solving Using EES
  • 2.7.Summary
  • Problems
  • 3.Thermodynamics and Fluid Flow in HVAC Applications
  • 3.1.Introduction
  • 3.2.Conservation of Mass
  • 3.3.Conservation of Energy
  • 3.4.Thermodynamic Properties of Pure Substances
  • 3.5.Thermodynamic Limits on Performance
  • 3.6.Thermodynamic Work Relations for Pure Substances
  • 3.7.Thermodynamic Relations for Fluid Flow
  • 3.8.Energy Loss Mechanisms in Fluid Flow
  • 3.9.Summary
  • Problems
  • 4.Heat Transfer in HVAC Applications
  • 4.1.Introduction
  • 4.2.Conduction Heat Transfer
  • 4.3.Convection Heat Transfer
  • 4.4.Thermal Radiation Heat Transfer
  • 4.5.Transient Heat Transfer
  • 4.6.Combined-Mode Heat Transfer
  • 4.7.Summary
  • Problems
  • 5.Psychrometrics for HVAC Applications
  • 5.1.Introduction
  • 5.2.Moist Air Properties
  • 5.3.The Psychrometric Chart
  • 5.4.The Standard Atmosphere
  • 5.5.Determining Psychrometric Properties Using EES
  • 5.6.Psychrometric Applications
  • 5.7.Heat and Mass Transfer for Air-Water Vapor Mixtures
  • 5.8.Summary
  • Problems
  • 6.Overview of HVAC Systems
  • 6.1.Introduction
  • 6.2.Overview of HVAC Systems and Components
  • 6.3.Energy Comparison Between CAV and VAV Systems
  • 6.4.HVAC System Performance Calculations
  • 6.5.ASHRAE Load Calculation Equations
  • 6.6.HVAC System Improvements and Alternatives
  • 6.7.Summary
  • Problems
  • 7.Thermal Comfort and Air Quality
  • 7.1.Introduction
  • 7.2.Criteria for Occupant Comfort Inside Buildings
  • 7.3.Criteria for Indoor Air Quality
  • 7.4.Summary
  • Problems
  • Building Heating and Cooling Loads
  • 8.Weather Data, Statistics, and Processing
  • 8.1.Introduction
  • 8.2.Design Temperature Parameters for HVAC Systems
  • 8.3.Ambient Temperature and Humidity Correlations
  • 8.4.Degree-Day Data and Correlations
  • 8.5.Bin Method Data
  • 8.6.Ground Temperature Correlations
  • 8.7.Solar Radiation Fundamentals
  • 8.8.Clear-Sky Solar Radiation
  • 8.9.Weather Records
  • 8.10.Summary
  • Problems
  • 9.Components of Building Heat Loss and Gain
  • 9.1.Introduction
  • 9.2.Thermal Resistance and Conductance of Building Elements
  • 9.3.Heat Flow Through Opaque Exterior Surfaces
  • 9.4.Transient Heat Flow Through Building Elements
  • 9.5.Heat Flow Through Building Elements
  • Transfer Function Approach
  • 9.6.Heat Flow Through Building Elements
  • Thermal Network Approach
  • 9.7.Heat Flow Through Glazing
  • 9.8.Energy Flows Due to Ventilation and Infiltration
  • 9.9.Internal Thermal Gains
  • 9.10.Summary
  • Problems
  • 10.Heating and Cooling Loads
  • 10.1.Introduction
  • 10.2.Design Heating Load
  • 10.3.Design Sensible Cooling Load Using the Heat Balance Method
  • 10.4.The Heat Balance Method Using the Thermal Network Approach
  • 10.5.Design Latent Cooling Load
  • 10.6.Design Loads Using the Thermal Network Method
  • 10.7.Summary
  • Problems
  • Equipment
  • 11.Air Distribution Systems
  • 11.1.Introduction
  • 11.2.Pressure Drops in Duct Systems
  • 11.3.Design Methods for Air Distribution Systems
  • 11.4.Fan Characteristics
  • 11.5.Interaction Between Fan and Distribution System
  • 11.6.Air Distribution in Zones
  • 11.7.Heat Losses and Gains for Ducts
  • 11.8.Air Leakage from Ducts
  • 11.9.Summary
  • Problems
  • 12.Liquid Distribution Systems
  • 12.1.Introduction
  • 12.2.Head Loss and Pressure Drop in Liquid Distribution Systems
  • 12.3.Water Distribution Systems
  • 12.4.Steam Distribution Systems
  • 12.5.Pump Characteristics
  • 12.6.Heat Loss and Gain for Pipes
  • 12.7.Summary
  • Problems
  • 13.Heat Exchangers for Heating and Cooling Applications
  • 13.1.Introduction
  • 13.2.Overall Heat Transfer Conductance
  • 13.3.Heat Exchanger Thermal Performance
  • 13.4.Heating Coil Selection Process
  • 13.5.Cooling Coil Processes
  • 13.6.Cooling Coil Performance Using a Heat Transfer Analogy
  • 13.7.Cooling Coil Selection Procedure
  • 13.8.Summary
  • Problems
  • 14.Cooling Towers and Desiccant Dehumidification Systems
  • 14.1.Introduction
  • 14.2.Cooling Towers
  • 14.3.Cooling Tower Performance using an Analogy to Heat Transfer
  • 14.4.Cooling Tower Selection Procedure
  • 14.5.Desiccant Dehumidifiers
  • 14.6.Desiccant Dehumidification Systems
  • 14.7.Summary
  • Problems
  • 15.Vapor Compression Refrigeration and Air-Conditioning Systems
  • 15.1.Introduction
  • 15.2.Vapor Compression System
  • 15.3.Refrigerants
  • 15.4.Vapor Compression System Compressors
  • 15.5.Vapor Compression System Performance
  • 15.6.Alternative Vapor Compression System Concepts
  • 15.7.Summary
  • Problems
  • 16.Heat Pump Systems
  • 16.1.Introduction
  • 16.2.Air Source Heat Pumps
  • 16.3.Ground Source Heat Pumps
  • 16.4.Water Loop Heat Pump Systems
  • 16.5.Summary
  • Problems
  • 17.Thermal Storage Systems
  • 17.1.Introduction
  • 17.2.Ice Storage Systems
  • 17.3.Chilled Water Storage Systems
  • 17.4.Cold Air Distribution Systems
  • 17.5.Building Thermal Storage
  • 17.6.Thermal Storage Control Strategies
  • 17.7.Performance Characteristics of Ice Storage Tanks
  • 17.8.Selection of Ice Storage Capacity
  • 17.9.Summary
  • Problems
  • Design and Control of HVAC Systems
  • 18.Building and HVAC Energy Use
  • 18.1.Introduction
  • 18.2.Weather Data for Energy Use Calculations
  • 18.3.Degree-day Method for Estimation of Heating Energy Use
  • 18.4.Bin Method for Estimating Energy Use
  • 18.5.Simulation Methods for Estimating Energy Use
  • 18.6.Thermal Network Method for Estimating Building Energy Use
  • 18.7.Summary
  • Problems
  • 19.HVAC Control Principles
  • 19.1.Introduction
  • 19.2.Feedback Control Techniques
  • 19.3.Implementation of Local Loop Control
  • 19.4.Advanced Control Techniques
  • 19.5.Summary
  • Problems
  • 20.Supervisory Control
  • 20.1.Introduction
  • 20.2.Introduction to Optimal Operation of HVAC Systems
  • 20.3.Optimization Statement for All-Electric Cooling Plants Without Storage
  • 20.4.Model-based Optimization Procedure
  • 20.5.Quadratic Optimization Procedure
  • 20.6.Simplified Control Strategies for System Components
  • 20.7.Optimization Statement for All-Electric Cooling Plants with Storage
  • 20.8.Simplified Control Strategies for Systems with Storage
  • 20.9.Methods for Forecasting Building Loads
  • 20.10.Summary
  • Problems
  • 21.Designing HVAC Systems
  • 21.1.Introduction
  • 21.2.Design Methodology
  • 21.3.Life-Cycle Cost
  • 21.4.Rules of Thumb
  • 21.5.Design Problems for the Students
  • Problems.