Probabilistic graphical models for genetics, genomics, and postgenomics /

Other Authors: Sinoquet, Christine, Mourad, RaphaeÌ̂l
Format: Book
Language:English
Published: Oxford : Oxford University Press, 2014
Subjects:
LEADER 02661nam a2200217 a 4500
001 1874116
005 20171111234655.0
008 160919s2014 enka b 001 0 eng d
020 |a 9780198709022  |q hbk. 
040 |a CY-NiOUC  |b eng 
050 0 0 |a QH438.4.S73P76 2014 
245 0 0 |a Probabilistic graphical models for genetics, genomics, and postgenomics /  |c edited by Christine Sinoquet, editor-in-chief, and RaphaeÌ̂l Mourad, editor. 
260 |a Oxford :  |b Oxford University Press,  |c 2014 
300 |a xxvii, 449 pages, 4 unnumbered pages of plates :  |b illustrations (some color) ;  |c 25 cm. 
504 |a Includes bibliographical references and index. 
505 0 |a pt. I. Introduction -- Probabilistic graphical models for next-generation genomics and genetics -- Essentials to understand probabilistic graphical models : a tutorial about inference and learning -- pt. II. Gene expression -- Graphical models and multivariate analysis of microarray data -- Comparison of mixture Bayesian and mixture regression approaches to infer gene networks -- Network inference in breast cancer with Gaussian graphical models and extensions -- pt. III. Causality discovery -- Utilizing genotypic information as a prior for learning gene networks -- Bayesian causal phenotype network incorporating genetic variation and biological knowledge -- Structural equation models for studying causal phenotype networks in quantitative genetics -- pt. IV. Genetic association studies -- Modeling linkage disequilibrium and performing association studies through probabilistic graphical models : a visiting tour of recent advances -- Modeling linkage disequilibrium with decomposable graphical models -- Scoring, searching and evaluating Bayesian network models of gene-phenotype association -- Graphical modeling of biological pathways in genome-wide association studies -- Bayesian systems-based, multilevel analysis of associations for complex phenotypes : from interpretation to decision -- pt. V. Epigenetics -- Bayesian networks in the study of genome-wide DNA methylation -- Latent variable models for analyzing DNA methylation -- pt. VI. Detection of copy number variations -- Detection of copy number variations from array comparative genomic hybridization data using linear-chain conditional random field models -- pt. VII. Prediction of outcomes from high-dimensional genomic data -- Prediction of clinical outcomes from genome-wide data. 
650 0 |a Genomics  |x Statistical methods 
650 0 |a Genetics  |x Statistical methods 
700 1 |a Sinoquet, Christine 
700 1 |a Mourad, RaphaeÌ̂l 
952 |a CY-NiOUC  |b 5a0461dd6c5ad14ac1ee6199  |c 998a  |d 945l  |e QH438.4.S73P76 2014  |t 1  |x m  |z Books