|
|
|
|
LEADER |
02067nam a2200217 a 4500 |
001 |
1001387 |
005 |
20171111232321.0 |
008 |
110923s2008 gr r 000 | eng d |
020 |
|
|
|a 9780521887182
|
040 |
|
|
|a GR-AtPPV
|b gre
|e AACR2
|
082 |
|
0 |
|2 23η
|a 515
|
100 |
1 |
|
|a Bell, J. L. (John Lane)
|
245 |
1 |
0 |
|a A primer of infinitesimal analysis/
|c John L. Bell
|
250 |
|
|
|a 2nd ed.
|
260 |
|
|
|a Cambridge:
|b Cambridge University Press,
|c 2008
|
300 |
|
|
|a xi, 124 σ. :
|b εικ. ;
|c 24 εκ.
|
504 |
|
|
|a Βιβλιογραφία : σ. 121-122
|
505 |
1 |
|
|a Basic features of smooth worlds -- Basic differential calculus -- The derivative of a function -- Stationary points of functions -- Areas under curves and the constancy principle -- The special functions -- First applications of the differential calculus -- Areas and volumes -- Volumes of revolution -- Arc length; surfaces of revolution; curvature -- Application to physics -- Moments of inertia -- Centres of mass -- Pappus' theorems -- Centres of pressure -- Stretching a spring -- Flexure of beams -- The catenary, the loaded chain, and the bollard-rope -- The Kepler-Newton areal law of motion under a central force -- Multivariable calculus and applications -- Partial derivatives -- Stationary values of functions -- Theory of surfaces. Spacetime metrics -- The heat equation -- The basic equations of hydrodynamics -- The wave equation -- The Cauchy-Riemann equations for complex functions -- The definite integral. Higher-order infinitesimals -- The definite integral -- Higher-order infinitesimals and Taylor's theorem -- The three natural microneighbourhoods of zero -- Synthetic differential geometry -- Tangent vectors and tangent spaces -- Vector fields -- Differentials and directional derivatives -- Smooth infinitesimal analysis as an axiomatic system -- Natural numbers in smooth worlds -- Nonstandard analysis.
|
650 |
1 |
0 |
|a Μη τυπική μαθηματική ανάλυση
|
710 |
|
|
|a Cambridge University Press
|
952 |
|
|
|a GR-AtPPV
|b 59cccb996c5ad134460916d2
|c 998a
|d 945l
|e 515 BEL
|t 1
|x m
|z Books
|